view ch4ex4.py @ 25:a46783561538

Implement Floyd-Warshall all pairs shortest path algorithm.
author Brian Neal <bgneal@gmail.com>
date Sat, 05 Jan 2013 13:00:07 -0600
parents 5c2c4ce095ef
children f6073c187926
line wrap: on
line source
"""This program performs item 4 in 4.4 exercise 4.

"Make a graph that replicates the line marked C(p)/C(0) in Figure 2 of the
paper. In other words, confirm that the clustering coefficient drops off slowly
for small values of p."

"""
import matplotlib.pyplot as pyplot

from Graph import Vertex
from SmallWorldGraph import SmallWorldGraph

# Use Dijkstra or Floyd-Warshall to compute L
DIJKSTRA = False

# compute C(0)
n = 1000
k = 10
vs = [Vertex(str(i)) for i in range(n)]
g = SmallWorldGraph(vs, k, 0.0)
c0 = g.clustering_coefficient()
l0 = g.big_l() if DIJKSTRA else g.big_l2()
print 'c0 =', c0, 'l0 =', l0

# compute data
p_vals = [0.0001, 0.0002, 0.0004, # 0.0006, 0.0008,
          0.001, 0.002, 0.004, # 0.006, 0.008,
          0.01, 0.02, 0.04, # 0.06, 0.08,
          0.1, 0.2, 0.4, # 0.6, 0.8,
          1.0]

c_vals = []
l_vals = []
for p in p_vals:
    g = SmallWorldGraph(vs, k, p)
    c_vals.append(g.clustering_coefficient() / c0)
    l = g.big_l() if DIJKSTRA else g.big_l2()
    l_vals.append(l / l0)

p_vals.insert(0, 0.0)
c_vals.insert(0, 1.0)
l_vals.insert(0, 1.0)

# plot graph
pyplot.clf()
pyplot.xscale('log')
pyplot.yscale('log')
pyplot.title('')
pyplot.xlabel('p')
pyplot.ylabel('C(p)/C(0)')
pyplot.plot(p_vals, c_vals, label='C(p)/C(0)', color='green', linewidth=3)
pyplot.plot(p_vals, l_vals, label='L(p)/L(0)', color='blue', linewidth=3)
pyplot.legend(loc=4)
pyplot.show()