view ch4ex4.py @ 24:5c2c4ce095ef

A stab at the L(p)/L(0) plot. I still don't quite get how the graphs in the Watts and Strogatz paper were generated. My results have basically the same shape, but don't converge to 0. I'm not sure how this is possible if the rewire function does not remove edges.
author Brian Neal <bgneal@gmail.com>
date Thu, 03 Jan 2013 18:41:13 -0600
parents 74c9d126bd05
children a46783561538
line wrap: on
line source
"""This program performs item 4 in 4.4 exercise 4.

"Make a graph that replicates the line marked C(p)/C(0) in Figure 2 of the
paper. In other words, confirm that the clustering coefficient drops off slowly
for small values of p."

"""
import random
import matplotlib.pyplot as pyplot

from Graph import Vertex
from SmallWorldGraph import SmallWorldGraph


title = 'C(p)/C(0)'

# compute C(0)
n = 1000
k = 10
vs = [Vertex(str(i)) for i in range(n)]
g = SmallWorldGraph(vs, k, 0.0)
c0 = g.clustering_coefficient()
l0 = g.big_l()
print 'c0 =', c0, 'l0 =', l0

# compute data
p_vals = [# 0,
          0.0001, 0.0002, 0.0004, # 0.0006, 0.0008,
          0.001, 0.002, 0.004, # 0.006, 0.008,
          0.01, 0.02, 0.04, # 0.06, 0.08,
          0.1, 0.2, 0.4, # 0.6, 0.8,
          1.0]

c_vals = []
l_vals = []
for p in p_vals:
    g = SmallWorldGraph(vs, k, p)
    c_vals.append(g.clustering_coefficient() / c0)
    l_vals.append(g.big_l() / l0)

# plot graph
pyplot.clf()
pyplot.xscale('log')
pyplot.yscale('log')
pyplot.title('')
pyplot.xlabel('p')
pyplot.ylabel('C(p)/C(0)')
pyplot.plot(p_vals, c_vals, label='C(p)/C(0)', color='green', linewidth=3)
pyplot.plot(p_vals, l_vals, label='L(p)/L(0)', color='blue', linewidth=3)
pyplot.legend(loc=4)
pyplot.show()