Mercurial > public > think_complexity
view ch4ex4.py @ 24:5c2c4ce095ef
A stab at the L(p)/L(0) plot.
I still don't quite get how the graphs in the Watts and Strogatz paper were
generated. My results have basically the same shape, but don't converge to 0.
I'm not sure how this is possible if the rewire function does not remove edges.
author | Brian Neal <bgneal@gmail.com> |
---|---|
date | Thu, 03 Jan 2013 18:41:13 -0600 |
parents | 74c9d126bd05 |
children | a46783561538 |
line wrap: on
line source
"""This program performs item 4 in 4.4 exercise 4. "Make a graph that replicates the line marked C(p)/C(0) in Figure 2 of the paper. In other words, confirm that the clustering coefficient drops off slowly for small values of p." """ import random import matplotlib.pyplot as pyplot from Graph import Vertex from SmallWorldGraph import SmallWorldGraph title = 'C(p)/C(0)' # compute C(0) n = 1000 k = 10 vs = [Vertex(str(i)) for i in range(n)] g = SmallWorldGraph(vs, k, 0.0) c0 = g.clustering_coefficient() l0 = g.big_l() print 'c0 =', c0, 'l0 =', l0 # compute data p_vals = [# 0, 0.0001, 0.0002, 0.0004, # 0.0006, 0.0008, 0.001, 0.002, 0.004, # 0.006, 0.008, 0.01, 0.02, 0.04, # 0.06, 0.08, 0.1, 0.2, 0.4, # 0.6, 0.8, 1.0] c_vals = [] l_vals = [] for p in p_vals: g = SmallWorldGraph(vs, k, p) c_vals.append(g.clustering_coefficient() / c0) l_vals.append(g.big_l() / l0) # plot graph pyplot.clf() pyplot.xscale('log') pyplot.yscale('log') pyplot.title('') pyplot.xlabel('p') pyplot.ylabel('C(p)/C(0)') pyplot.plot(p_vals, c_vals, label='C(p)/C(0)', color='green', linewidth=3) pyplot.plot(p_vals, l_vals, label='L(p)/L(0)', color='blue', linewidth=3) pyplot.legend(loc=4) pyplot.show()