Mercurial > public > think_complexity
view ch3ex6.py @ 31:a2358c64d9af
Chapter 5.4, exercise 5: Pareto distribution and city populations.
author | Brian Neal <bgneal@gmail.com> |
---|---|
date | Mon, 07 Jan 2013 20:41:44 -0600 |
parents | 84e183b40c63 |
children |
line wrap: on
line source
"""This module contains code from Think Python by Allen B. Downey http://thinkpython.com Copyright 2012 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html This is 3.6 exercise 6: "Test the performance of LinearMap, BetterMap and HashMap; see if you can characterize their order of growth. You can download my map implementations from thinkcomplex.com/Map.py, and the code I used in this section from thinkcomplex.com/listsum.py. You will have to find a range of n that is big enough to show asymptotic behavior, but small enough to run quickly." """ import random import timeit import matplotlib.pyplot as pyplot from ch3ex4 import LinearMap, BetterMap, HashMap MAP = None VALUES = None def test_map(): MAP.get(random.choice(VALUES)) def test_func(): elapsed = timeit.timeit('test_map()', setup='from __main__ import test_map', number=100) return elapsed def test(map_class): """Tests the given function with a range of values for n. Returns a list of ns and a list of run times. """ global MAP, VALUES klass = eval(map_class) d = {'LinearMap': 100000, 'BetterMap': 100000, 'HashMap': 100000} factor = d[map_class] # test (f) over a range of values for (n) ns = [] ts = [] for i in range(2, 25): n = factor * i MAP = klass() VALUES = range(n) random.shuffle(VALUES) for v in VALUES: MAP.add(v, v) t = test_func() print n, t ns.append(n) ts.append(t) return ns, ts def plot(ns, ts, label, color='blue', exp=1.0): """Plots data and a fitted curve. ns: sequence of n (problem size) ts: sequence of t (run time) label: string label for the data curve color: string color for the data curve exp: exponent (slope) for the fitted curve """ tfit = fit(ns, ts, exp) pyplot.plot(ns, tfit, color='0.7', linewidth=2, linestyle='dashed') pyplot.plot(ns, ts, label=label, color=color, linewidth=3) def fit(ns, ts, exp=1.0, index=-1): """Fits a curve with the given exponent. Use the given index as a reference point, and scale all other points accordingly. """ nref = ns[index] tref = ts[index] tfit = [] for n in ns: ratio = float(n) / nref t = ratio**exp * tref tfit.append(t) return tfit def save(root, exts=['eps', 'pdf']): """Saves the current figure in the given formats. root: string filename root exts: list of string extensions (specifying output formats). """ for ext in exts: filename = '%s.%s' % (root, ext) print 'Writing', filename pyplot.savefig(filename) def make_fig(funcs, scale='log', exp=1.0, filename=None): pyplot.clf() pyplot.xscale(scale) pyplot.yscale(scale) pyplot.title('') pyplot.xlabel('n') pyplot.ylabel('run time (s)') colors = ['blue', 'orange', 'green'] for func, color in zip(funcs, colors): data = test(func) plot(*data, label=func, color=color, exp=exp) pyplot.legend(loc=4) if filename: save(filename) else: pyplot.show() def main(script): make_fig(['LinearMap', 'BetterMap', 'HashMap'], scale='log', exp=1.0) if __name__ == '__main__': import sys main(*sys.argv)