Mercurial > public > think_complexity
diff ch5ex7.py @ 37:931f60dee99e
Chapter 5.6, exercise 7. Exploring the Texas road network.
author | Brian Neal <bgneal@gmail.com> |
---|---|
date | Thu, 10 Jan 2013 20:23:52 -0600 |
parents | |
children | d876711b88b5 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ch5ex7.py Thu Jan 10 20:23:52 2013 -0600 @@ -0,0 +1,78 @@ +"""Chapter 5.6, exercise 7 in Allen Downey's Think Complexity book. + +"The Stanford Large Network Dataset Collection is a repository of datasets from +a variety of networks, including social networks, communication and +collaboration, Internet and road networks. See +http://snap.stanford.edu/data/index.html. Download one of these datasets and +explore. Is there evidence of small-world behavior? Is the network scale-free? +What else can you discover?" + +Here we will analyze the Texas road network: +http://snap.stanford.edu/data/roadNet-TX.html + +""" +import sys +from collections import defaultdict + +from matplotlib import pyplot + +from Graph import Edge, Vertex, Graph + + +def main(script, datafile): + + node_map = defaultdict(Vertex) + g = Graph() + print 'Reading road network data...' + with open(datafile, 'r') as fp: + for line in fp: + if line.startswith('#'): + continue + vn, wn = line.split() + + v = node_map[vn] + w = node_map[wn] + + if v not in g: + g.add_vertex(v) + if w not in g: + g.add_vertex(w) + + g.add_edge(Edge(v, w)) + + print 'Calculating P(k)...' + # retrieve probabilities + p = g.get_p() + + # plot P(k) versus k on a log-log scale + + vals = p.items() + print 'Sorting data...' + vals.sort(key=lambda t: t[0]) + x, y = zip(*vals) + + assert abs(sum(y) - 1.0) < 1e-6 + + print 'Calculating clustering coefficient...' + c = g.clustering_coefficient() + print 'c =', c + print 'Setting edge lengths...' + g.set_edge_length(1) + print 'Calculating characteristic length L...' + l3 = g.big_l3() + print 'L =', l3 + + print 'Plotting data...' + pyplot.clf() + pyplot.xscale('log') + pyplot.yscale('log') + pyplot.title('P(k) versus k') + pyplot.xlabel('k') + pyplot.ylabel('P(k)') + pyplot.plot(x, y, label='P(k) vs. k', color='green', linewidth=3) + pyplot.legend(loc='upper right') + pyplot.show() + + +if __name__ == '__main__': + main(*sys.argv)