Mercurial > public > think_complexity
diff redblacktree.py @ 19:3c74185c5047
Added the remove() method to the red-black tree.
Made insert() and remove() return useful return values to support use in maps
or sets.
author | Brian Neal <bgneal@gmail.com> |
---|---|
date | Thu, 27 Dec 2012 13:46:12 -0600 |
parents | 92e2879e2e33 |
children | 0326803882ad |
line wrap: on
line diff
--- a/redblacktree.py Wed Dec 26 19:59:17 2012 -0600 +++ b/redblacktree.py Thu Dec 27 13:46:12 2012 -0600 @@ -71,6 +71,14 @@ self.color = color self.link = [None, None] + def free(self): + """Call this function when removing a node from a tree. + + It updates the links to encourage garbage collection. + + """ + self.link[0] = self.link[1] = None + def __str__(self): c = 'B' if self.color == BLACK else 'R' if self.value: @@ -109,8 +117,17 @@ def __init__(self): self.root = None + self._size = 0 + + def __len__(self): + """To support the len() function by returning the number of elements in + the tree. + + """ + return self._size def __iter__(self): + """Return an iterator to perform an inorder traversal of the tree.""" return self._inorder(self.root) def _inorder(self, node): @@ -118,15 +135,16 @@ tree starting at the given node. """ - if node.link[0]: - for n in self._inorder(node.link[0]): - yield n + if node: + if node.link[0]: + for n in self._inorder(node.link[0]): + yield n - yield node + yield node - if node.link[1]: - for n in self._inorder(node.link[1]): - yield n + if node.link[1]: + for n in self._inorder(node.link[1]): + yield n def _single_rotate(self, root, d): """Perform a single rotation about the node 'root' in the given @@ -204,28 +222,41 @@ return lh if is_red(root) else lh + 1 def insert(self, key, value=None): - """Insert the (key, value) pair into the tree.""" + """Insert the (key, value) pair into the tree. Duplicate keys are not + allowed in the tree. + + Returns a tuple of the form (node, flag) where node is either the newly + inserted tree node or an already existing node that has the same key. + The flag member is a Boolean that will be True if the node was inserted + and False if a node with the given key already exists in the tree. + + """ # Check for the empty tree case: if self.root is None: self.root = Node(key=key, value=value, color=BLACK) - return + self._size = 1 + return self.root, True # False/dummy tree root head = Node(key=None, value=None, color=BLACK) - d = LEFT - last = LEFT + d = last = LEFT # direction variables + # Set up helpers t = head g = p = None - t.link[1] = self.root - q = self.root + q = t.link[1] = self.root + + # Return values + target, insert_flag = (None, False) # Search down the tree while True: if q is None: # Insert new node at the bottom p.link[d] = q = Node(key=key, value=value, color=RED) + self._size += 1 + insert_flag = True elif is_red(q.link[0]) and is_red(q.link[1]): # Color flip q.color = RED @@ -243,6 +274,7 @@ # Stop if found if q.key == key: + target = q break last = d @@ -259,6 +291,85 @@ self.root = head.link[1] self.root.color = BLACK + return target, insert_flag + + def remove(self, key): + """Remove the given key from the tree. + + Returns True if the key was found and removed and False if the key was + not found in the tree. + + """ + remove_flag = False # return value + + if self.root is not None: + # False/dummy tree root + head = Node(key=None, value=None, color=BLACK) + f = None # found item + d = RIGHT # direction + + # Set up helpers + q = head + g = p = None + q.link[d] = self.root + + # Search and push a red down to fix red violations as we go + while q.link[d]: + last = d + + # Move the helpers down + g = p + p = q + q = q.link[d] + d = q.key < key + + # Save the node with the matching data and keep going; we'll do + # removal tasks at the end + if q.key == key: + f = q + + # Push the red node down with rotations and color flips + if not is_red(q) and not is_red(q.link[d]): + if is_red(q.link[not d]): + p.link[last] = self._single_rotate(q, d) + p = p.link[last] + elif not is_red(q.link[not d]): + s = p.link[not last] + + if s: + if not is_red(s.link[not last]) and not is_red(s.link[last]): + # Color flip + p.color = BLACK + s.color = RED + q.color = RED + else: + d2 = g.link[1] is p + + if is_red(s.link[last]): + g.link[d2] = self._double_rotate(p, last) + elif is_red(s.link[not last]): + g.link[d2] = self._single_rotate(p, last) + + # Ensure correct coloring + q.color = g.link[d2].color = RED + g.link[d2].link[0].color = BLACK + g.link[d2].link[1].color = BLACK + + # Replace and remove the saved node + if f: + f.key, f.value = q.key, q.value + p.link[p.link[1] is q] = q.link[q.link[0] is None] + q.free() + self._size -= 1 + remove_flag = True + + # Update root and make it black + self.root = head.link[1] + if self.root: + self.root.color = BLACK + + return remove_flag + if __name__ == '__main__': import random @@ -267,12 +378,33 @@ tree = Tree() tree.validate() + vals = [] + vals_set = set() for i in range(25): val = random.randint(0, 100) + while val in vals_set: + val = random.randint(0, 100) + vals.append(val) + vals_set.add(val) + tree.insert(val) + tree.validate() + print 'Inserted in this order:', vals + assert len(vals) == len(vals_set) + keys = [] for n in tree: print n.key, - print + keys.append(n.key) + print ' - len:', len(tree) - tree.validate() + # delete in a random order + random.shuffle(keys) + + for k in keys: + print 'Removing', k + tree.remove(k) + for n in tree: + print n.key, + print ' - len:', len(tree) + tree.validate()